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Abstract
The complex interactions between the central nervous system and the immune 

system are mainly mediated via synthesis and secretion of cytokines. Disturbance 
of the fine balance between different cytokine subpopulations is undeniable factor 
in the development of pathological process in multiple sclerosis. Experimental 
and clinical studies examining the impact of individual cytokines on the course 
of the disease often give conflicting results. The reason for this may be searched 
in the complex interactions within the cytokine network, dependent on the local 
milieu in the central nervous system. Efforts to modulate autoimmune process in 
multiple sclerosis have shown that effective treatments alter cytokine expression 
in a favorable way, indicating cytokines as possible therapeutic targets. The widely 
approved disease modifying treatments with interferon-beta, glatiramer acetate, 
cytostatic drugs, but also experimental therapeutic agents like estriol, statins and 
vitamin D have been proved to exert their beneficial effect partially by impact 
on different aspects of cytokine production. The purpose of this review is to 
highlight the importance to consider the complexity of cytokine interactions in 
pathogenesis and treatment of multiple sclerosis. Increase of the knowledge in 
this area will create opportunities for more precise determination of targets for 
immunologically active drugs in order to improve their effectiveness.
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Introduction
Multiple sclerosis (MS) is a chronic disease of the central nervous system 

(CNS) with complex and not fully clarified genetic-environmental interactions 
playing role in its etiology. These interactions unlock aberrant immune response 
directed towards myelin antigens in the brain and spinal cord. 

The sensitization and first activation of autoreactive CD4+T lymphocytes 
occurs in the peripheral blood. Through series of interactions they pass the blood-
brain barrier and invade the CNS. After second activation and in connection with 
other immune cells autoreactive T cells develop pathological process, leading to 
focal immune demyelination and axonal loss in the brain and spinal cord [1].

Role of Some Cytokines in Experimental Allergic 
Encephalomyelitis and MS-Pathology

Cytokines are critical components of the immune inflammatory process and 
are involved in oligodendrocyte cell death, axonal degeneration and neuronal 
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CD3 stimulation of PBMCs was reported in patients with 
secondary-progressive MS compared to relapsing-remitting 
MS or controls [3]. But in late stages of MS the autoimmune 
process becomes restricted within the CNS where the immune 
cells from the so called “lymph nodes”, the blood-brain barrier 
is closed and the degenerative processes with loss of brain 
tissue become more prominent. For these and other reasons 
little is known about changes of cytokine interactions within 
the local milieu.

Efforts to modulate autoimmune process in MS have 
shown that effective treatment changes different aspects of 
cytokine production. 

Effects of Interferon-Beta on Cytokine 
Profile

Interferon-beta-1b (IFN-beta-1b) was the first approved 
disease-modifying treatment (DMT) for MS. Changes in 
cytokine synthesis were studied both to understand mechanisms 
of action and to monitor the therapy (as biomarkers). There 
are many reports describing specific products regulated 
by IFN-beta. These include IL-10, IL-12, IL-17F, IL-23,  
IL-27, etc. [2, 10, 12-14]. The cerebro-spinal fluid (CSF)  
IL-10 was found increased in MS patients, treated for two 
years with IFN-beta-1a but not with placebo. Within IFN-
beta-treated patients those with increased levels of IL-10 in 
CSF showed less disability progression [15]. 

A small study on disability and cytokine secretion 
revealed interesting results. Patients treated with IFN-beta 
had significantly lower serum concentrations of IFN-gamma 
in relapse than the controls unlike those without DMT and 
lower levels of this pro-inflammatory cytokine correlated with 
less disability assessed by Expanded Disability Status Scale 
(EDSS) in the same phase [16]. With respect to the other 
studied cytokines (TNF-alpha, IL-10, IL-4) data from this 
study are supportive of the hypothesis of Pellegrini about 
restoration, to some degree, of the impaired cytokine balance 
as an effect of IFN-beta therapy [17]. 

Glatiramer Acetate Treatment and Cytokines
Glatiramer acetate (GA)-binding to MHC class II 

molecules on peripheral antigen-presenting cells and 
subsequent interaction with T-cells leads to induction of 
GA-specific T-cells. They cross the blood-brain barrier and 
are reactivated in CNS by the cross-reacting myelin antigens. 
The reactivated T cells produce suppression on the immune 
response against myelin via reducing the expression of pro-
inflammatory and sustaining the stable expression of Th2 
anti-inflammatory cytokines (bystander suppression) [18]. 
Increased secretion of IL-10 and reduced production of  
IL-12 from monocytes was reported under GA treatment 
[19]. In humans, GA impairs interactions between activated 
T-cells and microglia thus suppressing induction of several 
pro-inflammatory cytokines [20]. CNS infiltration of GA-
specific T-cells results in increased expression of IL-4, TGF-
beta and IL-10. Similar findings were reported in experimental 
animal models, suggesting that GA creates non-inflammatory 

dysfunction which are typical features in MS pathology. They 
are produced by different types of immune cells including 
macrophages, natural killer cells, B cells, T-regulatory (Treg), 
T-helper (Th) and T-cytotixic (Tc) lymphocytes, microglia etc. 
According to their cytokine production Th cells are divided 
into several subclasses – Th1, Th2, Th17, Th9 [2]. Autoreactive 
Th1 type lymphocytes produce IFN-gamma, TNF-alpha, 
interleukine-2 (IL-2), and are regarded as “encephalitogenic”, 
because transferred into experimental animals can cause 
experimental allergic encephalomyelitis (EAE) [3]. Increased 
levels of Th1 cytokines are particularly evident during EAE/
MS relapse, whereas increased Th2 cytokines, such as IL-4 
are found during remission in MS patients [4]. However, the 
imbalance between Th1/Th2 subpopulation is only a part of 
complex interactions underlying the disease pathogenesis.

Treg cells are essential for the control of the immune 
responses and the maintenance of immune tolerance [2]. 
Theories regarding the pathogenesis of autoimmune CNS 
inflammation assume that there is a disturbed balance 
between the cells that cause tissue damage and demyelination 
(effector T cells), and the cells that are capable of suppressing 
the function of self-reactive T cells (regulatory T cells). The 
proportion of Treg lymphocytes was found decreased in MS 
patients compared to healthy controls [2]. Recent findings 
indicate that MS is accompanied by dysfunction or impaired 
maturation of Treg cells [5].

The later discovered subset Th17 was proved to exacerbate 
the autoimmune process [2]. The levels of IL-17 produced by 
myelin basic protein-stimulated peripheral blood cells were 
shown to correlate with the active lesions in MS patients and 
microarray studies of MS lesions demonstrated increased IL-
17 expression [6, 7].  Like other Th subsets, the Th17 lineage 
is activated by a specific cytokine milieu. IL-23, TGF-beta, 
IL-6, and IL-1 are required for their generation and IFN-
gamma decreases the frequency of Th17 peripheral cells and 
proliferation of Th17 clones in active MS [8, 9].

Another recently identified effector subset Th9 can also 
induce EAE but in a different pathological manner. In the 
presence of TGF-beta, Th17 cells can produce IL-9. The IL-9 
neutralization and IL-9-receptor deficiency attenuated the 
disease, and this correlated with reductions in Th17 cells and 
IL-6-producing macrophages in the CNS [10].

On the other side, cytokines such as IL-4, IL-10, TGF-
beta, TNF-alpha via TNF-receptor 2, IL-1beta are involved 
in immune mechanisms that contribute to CNS recovery, 
protection and repair [11]. 

This very short overview suggests the pleiotropic properties 
of the cytokines and the extremely complicated interactions 
within the cytokine network and between them and the CNS 
in the development of the pathological process in MS. 

Progressive forms of MS are also characterized with some 
changes in cytokine expression. IL-12 p40 mRNA levels were 
found increased in unstimulated peripheral blood mononuclear 
cells (PBMCs) in secondary-progressive patients compared 
to controls and production of IL-12 p70 by stimulated 
PBMCs was higher in progressive than in acute forms of MS 
or controls. Increased expression of IFN-gamma after anti-
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cytokine milieu in the CNS [21]. In contrast to IFN-beta 
treatment, which reduces the expression of IFN-gamma 
by T-cells, GA-treated patients do not differ in their T-cell 
expression of IFN-gamma compared to untreated subjects 
[22]. 

Effects of Escalating and Target-therapies 
on Cytokine Production in MS

Natalizumab, recombinant humanized α4-integrin 
antibody, blocks migration of lymphocytes into the CNS 
[23]. Study of Mellergård et al. showed marked decline in 
CSF levels of cytokines and chemokines, thus including pro-
inflammatory cytokines IL-1beta, IL-6 and IL-8. Circulating 
plasma levels of some cytokines (GM-CSF, TNF-alpha, 
IL-6 and IL-10) were also found decreased after one year of 
treatment [24]. Significantly lower serum concentrations of 
pro-inflammatory cytokines TNF-alpha, IFN-gamma, IL-
1beta, IL-6, IL-17 and IL-23 were found in natalizumab-
treated MS patients compared to drug- naïve or IFN-beta-
treated ones [25].

Fingolimod, sphingosin-1-phosfate receptor modulator, 
inhibits egress of autoreactive lymphocytes from lymph 
nodes and prevents their recirculation in the CNS [26]. Study 
of Serpero et al. [27] showed that fingolimod functionally 
modulates the ability of potentially pathogenic effector cells to 
produce relevant pro-inflammatory cytokines and increases the 
number of circulating regulatory T cells possibly contributing 
in restoring the balance between these subpopulations [27]. 
There are data that Fingolimod significantly increases the 
expression of IL-6, IL10 and IL-17A cytokines from PBMCs 
but other studies show no direct effect on cytokine production 
[28, 29].

Members of the new class MS-treatments are Dimethyl 
fumarate, Alemtuzumab, Daclizumab, Teriflunomid. For each 
of them there are evidences about changes in different aspects 
of cytokine production and interactions. 

Clinical trials showed that Dimethyl fumarate (DMF) 
induces shift from Th1 to Th2 type cytokine secretion with 
reduced levels of TNF-alpha and IFN-gamma and markedly 
increased levels of IL-4, IL-5 and IL-10. Similar are the 
results from experimental studies. In addition, DMF down-
regulates dendritic cells, which play central role in regulation 
of the inflammatory processes and suppresses their IL-12 
secretion [30, 31].

Treatment with Alemtizumab, a monoclonal antibody 
(Ab) targeting CD25 antigen on the surface of lymphocytes, 
monocytes, macrophages, natural killer cells, eosinophils, 
diminishes secretion of all cytokine classes (Th1, Th2 and 
Th17) after 1 year administration [32]. 

Daclizumab, another monoclonal Ab, exerts its effect 
through modulation of IL-2 signaling. IL-2 is crucial for 
the clonal expansion of autoreactive CD4+ T cells. Binding 
to the alpha subunit specifically blocks high-affinity IL-2 
Receptor but not intermediate-affinity IL-2 Receptor and 
leads to decrease in CD+ T-cell proliferation and increase in 

the number of the regulatory natural killer cells [33].

Teriflunomide inhibits proliferation of activated 
lymphocytes and diminishes the number of activated T and 
B cells that are able to migrate into the CNS. It was shown to 
decrease the release of IL-6 and IL-8 from human PBMCs. 
In vitro studies found increased levels of TGF-beta in presence 
of teriflunomide and lower production of IFN-gamma from 
myelin basic protein-specific activated T cell lines [34].

Other Modulators of the Cytokine Production
Changes in cytokine production are amongst the 

mechanisms of action of other agents such as statins, Vitamin 
D and sex hormones, which are thought to be beneficial in 
MS. 

It is accepted that Vitamin D restores the balance 
between Th1 and Th2 type cytokine secretion and statins 
inhibit IFN-gamma inducible expression of MHC class 
II molecules on microglia and antigen – specific activation 
of myelin-specific CD4+ T cells, accompanied by reduced 
secretion of pro-inflammatory Th1 cytokines. Many but not 
all studies demonstrate that statins may enhance Th2 cytokine 
production [35, 36].

Observations on immune changes during pregnancy and 
the dramatic reduction of the relapse-rate in the last trimester 
drew attention on immune-modulatory effects of female sex 
hormones [37]. A study of our team on hormonal and cytokine 
secretion in women with MS showed that abnormally low 
concentrations of sex hormones are associated with higher 
serum levels of pro-inflammatory cytokines TNF-alpha and 
IFN-gamma [38]. Oral administration of high doses of estriol 
in MS patients, studied by Soldan et al., caused decreased TNF-
alpha and increased IL-10 and IL-5 secretion from stimulated 
PBMCs [39]. These data are evidences that favorable change 
in cytokine balance is an important mechanism of action for 
female sex hormones.

There are number of publications in the scientific 
literature about experimental treatments targeting a particular 
cytokine. All these attempts proved inefficient. This regards 

Table 1: Experimental cytokine therapies. 

Cytokine Studies 

TNF-alpha 
blokade 

van Oosten BW, Barkof F, Truyen L, et al., 1996

The Lenercept Multiple Sclerosis Study  Group and 
The University of British Columbia MS/MRI 
Analysis Group, 1999

IL-10 Skias DD, Reder AT, 1995

Wiendl H, Neuhaus O, Kappos L, Hohlfeld R, 2000
IL-4 * * Bayer company has stopped investigations in phase I 

TGF-beta Calabresi PA, Fields NS, Maloni HW, et al., 1998 

Anti-IL-12/23 
p40

Segal BM, Constantinescu CS, Raychaudhuri A,
Kim L, Fidelus-Gort R, et al., 2008 Ustekinumab
MS Investigators

http://www.ncbi.nlm.nih.gov/pubmed/%3Fterm%3DKasper%2520LH%255BAuthor%255D%26cauthor%3Dtrue%26cauthor_uid%3D18703004
http://www.ncbi.nlm.nih.gov/pubmed/%3Fterm%3DKasper%2520LH%255BAuthor%255D%26cauthor%3Dtrue%26cauthor_uid%3D18703004
http://www.ncbi.nlm.nih.gov/pubmed/%3Fterm%3DKasper%2520LH%255BAuthor%255D%26cauthor%3Dtrue%26cauthor_uid%3D18703004
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TNF-alpha and IL-12/23 p40 blockade, administration of 
recombinant IL-10, IL-4, TGF-beta [Table 1]. Neutralization 
of TNF-alpha in patients with MS led to significant increase 
in exacerbation frequency and neurological deficit. Treatment 
with TGF-beta caused renal toxic effect before any beneficial 
influence on the disease course was observed. Clinical trials 
with IL-4 and IL-10 were stopped in different phases due to 
lack of efficacy and recombinant IL-10 administered to animals 
with EAE even exacerbated the disease. Anti-IL-12/23 p40 
did not show difference compared to placebo according the 
cumulative number of new gadolinium-enhancing cranial 
magnetic-resonance lesions. The reason for these failures may 
be searched in the extremely complex cytokine interactions 
playing role in disease pathogenesis and the delicate and 
dynamic balance within the cytokine network, necessary for 
maintaining adequate immune responses. Moreover there 
are still many unknown details about their local effects in the 
CNS during different stages of MS. 

Conclusion
The majority of experimental and clinical data indicate 

that interactions within the cytokine network in MS are 
extremely complex and divergent. They are highly dynamic 
and vary through the whole course of the disease and under 
treatment. Still, there are many gaps and contradictions in this 
area. The experience from the experimental and clinical trials 
shows that therapeutic strategies which target restoration of 
the balance within the cytokine network would be much more 
beneficial in MS than those, directed towards one singular 
cytokine signaling. The other main point is the necessity of 
enlarging the knowledge about immune-CNS interactions 
and the role of the cytokines in regulation of different 
subpopulations immune cells throughout the whole course of 
the disease in order to determine the right target and the right 
time for given immune therapy.
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